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Abstract 

In the last decades, there has been a necessity for systems capable of handling market changes and various personalized 
customer needs, with near mass production efficiency, defined as mass customization. Industry 5.0 further exposed this need 
for robust flexible systems, as well as a necessity of manufacturing systems that work in close cooperation with workers, taking 
advantage of the problem-solving capabilities and knowledge of the manufacturing process. A solution for this necessity is to 
develop a flexible manufacturing system, capable of handling different customer requests and real-time decisions from 
operators. Which this thesis tackles by proposing a Digital Twin focused on the simulation of a Robot System for Solution 
Preparation, capable of making real-time scheduling decisions and forecasts by using a simulation model to test different 
resource configurations and customer requests, while allowing an operator to make changes in the processing time and order 
of some operations in real-time. A mixed event simulation model was utilized to do resource forecasts, where real-time 
decisions were performed by recurring to completely reactive scheduling with parallel tasks. Resource forecasts were utilized 
to know where the manufacturing system can be improved. It was shown that combining parallel tasking with parallel machines 
to key processes, utilizing heuristics that emphasize the shortest transportation time and increasing the robot’s speed, best 
impact the performance of the system, reducing overall completion time by 82%, when comparing single tasking and single 
machines. The simulation model also has an animated visualization window, for a deeper understanding of the system. 
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1. Introduction 

During the last decades, there have been remarkable leaps in 
the areas of information technologies and digitalization, that 
lead to the creation of autonomous, self-regulated systems.  

These developments increased the output of the industry by 
a large margin, but the growing variety and rising costumer 
demand for individual or custom-made products at lower 
costs, calls for the design and operation of systems capable of 
handling this increasing variety in products. This need to 
deliver products and services that best meet individual 
customers’ needs with near mass production efficiency, which 
is defined as mass customization is therefore necessary [1]. A 
way to deal with this issue is the use of Flexible 
Manufacturing Systems (FMS), in which, the main idea is, a 
system built a priori to deal with changes in the market 
demands, able to yield a wide range of products from a single 
base unit [2]. 

The need to increase production flexibility is part of the 
ideals of Industry 5.0, which recurs to data and AI as well as 
having closer cooperation between man and autonomous 
machines, taking advantage of the human problem-solving 
capabilities to increase the production flexibility [3]. 

This paper addresses the need for mass customization and 
flexible robust systems, by developing a Digital Twin of a 
flexible manufacturing system, capable of handling different 
requests and real-time changes from operators and clients, by 
making use of the new technological trends. 

T. Coito et al. [4]  first presented this manufacturing system 
as a case study, in the quality control laboratory of the 
pharmaceutical industry. The authors propose a platform that 
allows for the autonomous acquisition and management of 
personalized data in real-time for mass customization 
manufacturing environments, that supports the integration of 
dynamic Decision Support Systems.  

The idea of a Digital Twin (DT) refers to a comprehensive 
physical and functional description of a component, product 
or system, which includes more or less all information which 
is considered useful, so that a digital entity of its own could 
be created, considered as a “twin”, that allows the exchanging 
of information between the real system and its digital 
counterpart. The Digital Twin when coupled with data 
analytics allows for real-time monitoring, rapid analysis, and 
real-time decisions, allows stakeholders to quickly detect 
problems in physical systems, increase the accuracy of their 
results and more efficiently produce better products [5]. 

To make real-time scheduling decisions, the Digital Twin 
must be coupled with a scheduling algorithm. Scheduling in 
this context has the goal of assigning a set of jobs, each having 
a set of operations that need to be scheduled in machines with 
the goal of reducing the total time to process all the jobs 
(makespan) and increase machine utilization. As in the real 
world real, machines can breakdown, orders can be late, 
operators might be unavailable, new urgent orders might 
arrive, there can be variations in processing time, especially 
in flexible systems, making the scheduling plan obsolete very 
quickly. In completely reactive scheduling, no firm schedule 
is made in advance and all decisions are made in real-time, 
the decisions are made using a dispatching rule to select the 
next job with the highest priority from a set of available jobs 
waiting to be processed [6]. 

The Robot System for Solution Preparation is an industrial 
prototype, its purpose is to create liquid preparations of 
products in bottles, which is done by having an 
anthropomorphic robot with 8 different workstations (Ws), 
with unique functions such as mixing, labelling, stirring that 
are within the robot’s range, with the robot being the resource 
responsible for the movement of bottles. The already existing 
system processes a single bottle or job at a time, it’s expected 
to reduce the makespan by recurring to parallel task 
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scheduling, which means, having multiple entities being 
processed at a time, combined with testing different resource 
allocations, robot parameters, and the right scheduling 
algorithm, to create a system capable of efficiently handling 
multiple bottles simultaneously and different costumer 
requests while allowing stakeholders to manipulate process 
and scheduling parameters, and also to make real-time 
decisions, creating the desired flexible environment with 
Industry 5.0 ideals. This thesis focuses on the simulation part 
of the DT, which is part of the environment comprised of Real 
System and Stakeholders and DT, (figure 1): 

 
Figure 1: Diagram of the of Real System, Stakeholders and Digital 

Twin environment 

The Digital Twin receives both historical and real-time data, 
associated with the process flow of the manufacturing system, 
that is, processing times, transportation times and decisions 
that relate to the scheduling process, and with it, makes 
scheduling decisions, based on a chosen algorithm. It works 
as a tool to help Stakeholders monitor the asset and do 
simulation runs to better understand the system and decide 
scheduling parameters, where resources should be allocated 
and to make real-time scheduling decisions with the constant 
flow of information from its real counterpart. 

 

2. Discrete Event Systems Modelling 

Computer simulation is a powerful tool used to analyze the 
performance of existing or newly designed systems by 
making use of mathematical or numerical techniques. This 
works by creating a model of the conceptual framework of the 
system, which then can be used for a wide variety of 
experiments with the system, and by analyzing the results, 
conclusions can be taken in order to help with the decision-
making processes of the stakeholders [7].  

2.1 Time Advance Mechanisms 

One type of simulation is discrete event modelling, where 
changes in the system occur at discrete times, these changes 
then affect the system depending on the chosen Time Advance 
Mechanism (TAM). The two most common TAMs currently 
in use are the “next event” method, implemented in Discrete 
Event Simulations (DES) and the “time step” or “fixed 
increment” method implemented in Discrete Time 
Simulations (DTS). 

Real-time is continuous but a digital computer would take 
an infinite amount of time to represent it, so in DTS a 
“Simulation Clock” is introduced in which the time is 
discretized in order to be finite, this works by having constant 
time increments of ∆t (that can be a second, an hour and so 
on), effectively “skipping time” between increments, this 

way, continuous time can be simulated on digital computers 
[8]. 

Contrary to DTS, in Discrete Event Systems (DES), the state 
transitions are driven by the combination of asynchronous and 
concurrent events, this way, events are the cause of change in 
the system, so the concept of time is not the driving force of 
the simulation and is instead a variable dependent on the state 
transitions, so the simulation effectively skips time between 
events [9]. 

2.2 Related Work 

T. Coito et al. [10]  first presented the prototype as a case 
study, where the implementation of a middleware platform is 
discussed, with the goal of facilitating the information 
exchange between real assets and the Decision Support 
Systems for a Quality Control laboratory, where the prototype 
is included. The authors propose a platform that allows for the 
autonomous acquisition and management of personalized data 
in real-time mass customization manufacturing environments, 
that supports the integration of dynamic Decision Support 
Systems. 

Yu et al. [11] Fused the concept of Digital Twin with job 
shop scheduling of a flexible job shop of a manufacturing 
system. The authors created a Scheduling cloud platform that 
takes input from the sensors from the physical workshop 
which fuels data to its respective Digital Twin and also 
originates a fault prediction and diagnosis curve, the Digital 
Twin then gives to the Scheduling cloud platform simulation 
data and energy consumption diagrams to help planning the 
process steps. Yu et al. found advantageous to have access to 
a lot of data from the whole manufacturing process, helping 
to monitor the whole life cycle of the products, reduce energy 
consumption and predict failures in the processes. 

Wladimir Hofmann et al. [12] presents a Digital Twin with 
real-time decision support for port operations, to deal with the 
issue of truck congestion in arrival gates. The Digital Twin 
assists the dispatching operator in the decision-making 
process of releasing trucks whenever the port terminal is free, 
with the goal of reducing the probability of deadline violations 
due to low utilization of bottleneck resources. The Digital 
Twin receives both present and past information, using IoT, 
from the registered trucks, and by using a dispatching 
algorithm, which enables different dispatching policies, to be 
evaluated and presented to the dispatching operator, he can 
then discuss with the involved stakeholders the best 
combination of parameters. 

Karagiannis et al. [13] addressed the issue of how hard 
automation solutions that increase productivity, end up not 
allowing industries to adapt to market changes and system 
malfunction, by utilizing an existing consumer goods 
industrial production line. The authors developed a DES 
model which offers the possibility to test all the probable 
occurrences in the assembly line, by the manipulation of 
parameters, in a risk-free virtual environment.  

To the authors knowledge, there is not a lot of research topic 
that bring together the concept of Digital Twin working with 
a human counterpart in a flexible environment, the literature 
mostly present somewhat stochastic conditions, machine 
breakdowns, new orders, late arrivals and workers 
unavailable as proprieties that make the system dynamic, but 
rarely the inclusion of a human counterpart, capable of 
changing processing times and workflow, also, the flexibility 
of the manufacturing systems, tends to come from supply 
chain flexibility, not from the manufacturing process itself 
[14], [15]. 
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3. Developed Digital Twin 

The first step to make the necessary changes to adapt this 
prototype to the necessities presented earlier, is to know the 
workings of the already existing system, which will also help 
with the validation of the simulation model. 

In this system, a bottle is considered as the entity that goes 
through the processes with time and workflow defined by 
each client request, with the workflow shown in figure 3, it 
first starts in an Entrance Storage (ES), then it’s transported 
by the robot manipulator through each workstation to be 
processed, until it ends in the Final Storage (FS), both the ES 
and the FS use a rotating storing device, the workstations (Ws) 
and their positions relative to the robot are displayed bellow: 

 
Figure 2: Position of Workstations and Robot of the prototype 

Each movement of the robot when it is carrying a bottle is 
also considered as a process 𝑀𝑖𝑖′, the first one 𝑀12 describing 
the movement from ES to workstation 1 (W1),  𝑀23 from W1 
to W2 and so on, in total there are 13 movements, and each 
bottle has its own order of movement, and may repeat or skip 
some, depending on the client’s request and real time 
decisions, these are shown in figure 3. 

As its intended to create a model with parallel tasks, every 
time the robot finishes placing a bottle in a Ws, a chosen 
dispatching rule determines what bottle should the robot 
attend to next, and so, the robot moves without carrying a 
container when changing between tasks, this motion time is 
defined as pre movement time 𝑀𝑝𝑝𝑖, from the robot’s current 

position (𝑝) to the workstation of the next task (𝑖). 
To better understand how the processes interact with each 

other, the Process Model and Notation (BPMN) was 
employed, a visual modeling language for defining enterprise 
process workflows [16]. Which can be consulted in figure 3. 

The industrial prototype makes liquid solutions in bottles, 
which can be described as jobs 𝐽1, 𝐽2, … , 𝐽𝑛 to be scheduled in 
the machines W1 to W8 with the order represented in figure 
3, where each job has a specific route through the machines 
depending on customer requests and real-time decisions.  

There are real-time events and decisions, such as: number of 
iterations between W3 and W4 until the pH is correct either 
automatically or by the workers decision, real-time changes 
in the process time in W3 and W6, preparation orders that can 
arrive at any moment for processing, and the stochasticity of 
processes. These dynamic proprieties make the schedule 
building a difficult task, as it quickly gets obsolete, making 
rescheduling too frequent and ineffective, this makes a 
completely reactive scheduling an adequate option to apply in 
this case study. 

To address this issue, traditional dispatching rules such as, 
the Shortest Processing Time (SPT), Longest Processing 

Time (LPT), and Least Work Remaining (LWR) were 
employed, which define the priority of jobs currently not 
being processed . The job j with highest priority according to 
the chosen dispatching rule, is the next one to be processed. 
This procedure occurs according to Figure 4, and the job’s 
priority is set to zero if the next workstation in the workflow 
is full, or if the movement might stop the flow of tasks and 
result in a standstill for the system, the dispatching rules have 
the following equations: 

Shortest Processing Time (SPT), each job has an associated 
priority 𝑃𝑗 with 𝑗 as the job number and 𝑡𝑖𝑗 as the processing 

time of operation 𝑖  defined as: 
 

𝑃𝑗 =
1

𝑡𝑖𝑗 + 𝜀
 

(1.a) 

If the next movement will be towards the Final Storage (FS), 
𝑡𝑖𝑗 will be zero and the priority will be infinite, to prevent this, 

a small number (𝜀) is utilized in the priority equation. 
Longest Processing Time (LPT): 

 𝑃𝑗 = 𝑡𝑖𝑗 + 𝜀 (1.b) 

In the case of LPT, the small number (𝜀) is used to 
distinguish the priority from zero, as this means, that the job 
is not available. 

Least Work Remaining (LWR), sums all the processing 
times of a job 𝑗, from the current operation 𝑐, until the last one 
𝑟: 

 ∑(𝑡𝑖𝑗) + 𝜀

𝑟

𝑖=𝑐

 (1.c) 

 
Since the transportation time is long, the robot’s movement 

can be relevant in scheduling decisions, so two variation 
algorithms based on the movement time were employed, to 
analyze how they fare against traditional scheduling 
algorithms: 

Shortest Movement Time (SMT): prioritizes jobs that are 
closer to the robot’s current position, based on the time it 
would take for the robot to reach the desired Ws, the priority 
of a job is defined by the (eq. 1.d), represents the decision 
process.  

Current Shortest Movement Time (CSMT): when the robot 
places a bottle in a workstation, it might be beneficial to wait 
for the process to finish, and transport that same bottle, CSMT 
employs the SMT idea for jobs currently not being processed 
or free jobs, and it compares the priority of these jobs (eq 1.d), 
with a priority of the job that the robot just transported, 
defined as the current priority (eq 1.e), which is based on the 
processing time.  

Free Jobs: the priority equation 𝑃𝑗 with 𝑗 as the job number, 

𝑀𝑝𝑝𝑖 being the pre movement time from current location of 

the robot 𝑝 to the workstation 𝑖: 

 𝑃𝑖𝑗 =
1

𝑀𝑝𝑝𝑖 + 𝜀
 (1.d) 

Current Job: Current job is defined as the job in which the 
robot is about to finish transporting, its priority equation is 
defined as: 

 

 𝑃𝑐𝑗 =
1

𝑡𝑖𝑗 + 𝜀
 (1.e) 
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Figure 3: Workflow of each client request through the workstations 

in BPMN, the movements are represented only by the M letter 

Figure 4: Decision workflow for the dispatching rules in 

BPMN 
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3.1 Model Translation 

To develop the simulation model, the Anylogic software was 
utilized, three model is divided in workstations, each one with 
a set of Anylogic blocks such as Seize (to seize a workstation), 
Resource Pool (available Ws), Move by Crane (crane 
movement), Release (release a bottle from the workstation) 
and Delay (processing time). These activities can be described 
in Anylogic recurring to the process modeling library and the 
material handling library, the robot is described in Anylogic 
as a jib-crane, as the software does not have an animated 
robot, it emulates the movements and interaction with the 
bottles well enough in a visualization setting, for this the block 
(MovebyCrane) was utilized, which allows the modeler to 
define the trajectory and transportation time of the entities 
[17]. 

 
Figure 5: Visualization window in Anylogic during a simulation 

run 

Anylogic also supports both 2D and 3D animation which 
helps the modeler in simulation, as it provides another angle 
to understand the model, and make sure its functioning 
correctly, as visualizing the robot movement and interactions 
with the bottles, is an easier way of understanding the 
simulation model while its running. 

3.2 Data Processing 

To collect data related with the robot’s movement time, it’s 
necessary to understand its motion, since the already existing 
system only provides a limited set of movements, shown in 
figure 3, some extrapolations need to be done to obtain all the 
possible movements. Since it is not relevant the movement of 
all joints, the robot’s movement can be simplified, through the 
division of a single movement in three components, the 
approach motion time (𝑚𝑎), the rotational motion time (𝑚𝑟) 
and the exit motion time (𝑚𝑒), these are to approach the 
workstation and place the bottle, to do the rotation between 
workstations, and to take a bottle from a workstation 
respectively. 

When switching between jobs, the pre movement time 
(𝑀𝑝𝑝𝑖) is employed, it consists of the rotation motion without 

a bottle, from its current position (𝑝), to the workstation where 
the next movement starts (𝑖), then the robot performs the exit 
motion for the Ws (𝑖), grabbing the bottle (figure 6) 

 
Figure 6: Pre movement from robot's current position W6 to W5 

The movement time (𝑀𝑖𝑖′) consists of the rotation motion 
time (𝑚𝑟) with a bottle, from the workstation where the  
movement starts (𝑖), to the next workstation (𝑖′), where the 
robot leave the bottle, with the approach motion time (𝑚𝑎), 
this can be shown in figure 7. 

 
Figure 7: Movement time between W5 and W1 

The rotation motion between several workstations was 
observed, the average speed 𝑣  of the rotation time, varies 
slightly depending on the movement, since the complex robot 
movement was simplified in three parts, and the rotation 
speed is not constant, an acceptable rotation motion speed of 
the robot (𝑣), for the rotation time (𝑚𝑟), must be chosen for 
calibration of the model, discussed in section 4.1. 

Most processes are either stochastic, or can change in real-
time, but there is the exception in some of them, in W2, in 
which the bottles are filled with different solutions, the 
quantity of each and different products depends on the 
customer’s request. The time it takes to fill a recipient 
naturally depends on the amount of liquid solution, and since 
the quantity of liquid is measured with a scale, the liquid flow 
diminishes when the weight is close, taking longer to fill to 
the desired amount which adds variability to the process. The 
time to fill a bottle was approximated using the following 
linear regression: 
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Figure 8: Plot of time to fill a bottle with solution, depending on the 
quantity, real data is represented by the blue dots, and the gray line 

is the approximation curve 

As to emulate the high variability in the process, probability 
density function 𝑓(𝑥), utilized for normal distribution, was 
applied to the resulting data, and a triangular fitting was 
applied: 

 
Figure 9: Probability density function of the time in W2, blue dots 
are the percentiles of the real data, and the black line is the chosen 

fitting distribution 

The time in W3 depends on the amount of liquid filled in 
W2, and can be changed in real-time by a worker, a curve was 
created as to emulate the dependency on W2, to represent the 
variation, a triangular distribution was employed as well. 

Linear approximations and triangular probability density 
functions were also utilized for describing the process time in 
W6, which can also be changed in real-time, with the help of 
individuals involved in the development of the system. 

As for the rest of the workstations, the workflow is linear 
and does not depend on multiple parameters, the time data was 
obtained either by observation or by consulting entities 
involved in the development of the prototype. 

Decisions such as the need for a bottle to check pH and 
labelling come from recipe in preparation requests, although 
real costumer requests are not available, individuals involved 
in the development can be consulted. Regarding the pH check, 
about 50% of requests need to go through this process, and 
out of the ones that do, 40% need to do it again. Regarding 
labelling, since the labelling machine can run out of labels, 
the system must still be able finish the jobs, and so 70% of 
recipes need a label, even though every bottle should have 
one. 

With this information in respect to the workstations, a list of 
500 different costumer requests was created, using uniform 
random distributions of linear approximations from the W2, 
W3 and W6 as well as the need to go to W4 and W8 for pH 
check and labelling respectively. 

The variation in the processes, emulated by the triangular 
distributions, were imbedded in the model, as to simulate the 
stochastic conditions. regarding the W4, when a job must go 
to do a pH check from recipe, the probability of it going again 
follows a poisson distribution. 

4. Simulation Study 

4.1 Verification, Validation and Calibration 

The verification was done by analyzing the simulation runs, 
step by step, through visual validation of the crane movement, 
checking if the parameters and variables are correct, and 
manually doing the math related with scheduling to check if 
the right decisions are being made by the model. 

To calibrate and validate the model as a whole, the system 
can be seen as input-output transformations, where the model 
receives input parameters and transforms it in output 
measures of performance, testing the model’s capability of 
predicting the future behavior (output) of the real system, 
when fed the same input data as in the real counterpart. For 
calibration, different values of rotation motion speed of the 
robot (𝑣) where tested, to see which value more closely 
emulates the real counterpart as discussed in section 3.2. 

Rotation speeds (𝑣)  from 3 rad/s to 4 rad/s were 
experimented, and the relative approximation error 𝐸𝑖𝑣  at the 
end of the operations (𝑖) and accumulated relative 
approximation error 𝐸𝑣 of all operations (𝑟) of the model time 
relative to the actual time, defined by equation 2.1a and 2.1b 
respectively were used as measure of performance, with the 
results in figure 10 [18]. 

 𝐸𝑖𝑣 =
|𝑇𝑠𝑖𝑣 − 𝑇𝑟𝑖𝑣|

𝑇𝑟𝑖𝑣

∗ 100 (2.a) 

 𝐸𝑣 = ∑ (
|𝑇𝑠𝑖𝑣 − 𝑇𝑟𝑖𝑣|

𝑇𝑟𝑖𝑣

∗ 100)

𝑟

𝑖=1

 (2.b) 

 
𝑇𝑟𝑖: Real-time at which process 𝑖 finishes for rotation 

velocity of 𝑣. 
𝑇𝑠𝑖: Simulation time at which process 𝑖 finishes for rotation 

velocity of 𝑣. 

 
Figure 10: Plot of Accumulated relative approximation error, 

depending on the rotation speed 
With testing results from different rotation speed values, it 

was shown that  rad/s was the value that ensures the smaller 
accumulated error of 5.6%, and so, it was the chosen speed 
for calibration and validation. 

Although this approximation is not as valuable as having 
real data regarding all the movements, it can describe the 
movement times for the existing system with enough 
accuracy, with this information, tables containing the rotation 
(𝑚𝑟𝑖𝑖′), pre movement (𝑀𝑝𝑝𝑖 ) and movement times (𝑀𝑖𝑖′) 

with all the possible movements, where then defined, and fed 
to the simulation model for simulation runs. 

4.2 Results and Analysis 

With the model validated, the next step is to do simulation 
runs with multiple bottles and a variety of different 
parameters, which are called iterations, and discover what 
decisions reduce the makespan and increase the utilization of 
the equipment. 
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In this step, different model parameters are chosen to better 
understand where the system can be improved, for those, 
different measures of performance are utilized: 

Makespan (𝑇): time to process all the Jobs, or total time. 
Resource Utilization (𝑈𝑤): measures the utilization of a 

workstation or the robot, is the relation between the total 
working time of a resource (𝑇𝑢𝑊) and the makespan (eq. 7.a): 

𝑈𝑤 =
𝑇𝑢𝑤

𝑇
 (7.a) 

Resource Occupation (𝑅𝑜):  measures the occupation of a 
workstation, that is, the percentage of time, these have bottles, 
independent of the working time, is the relation between the 
occupation time of a resource (𝑇𝑜𝑤) and the makespan (eq. 
7.b): 

𝑂𝑤 =
𝑇𝑜𝑤

𝑇
 (7.b) 

Performance Improvement (𝐼): also called makespan 
reduction or reduction in total completion time, is to compare 
the makespan of different iterations, and measure the effect of 
parameter changes, with 𝑇𝑝 as the makespan of the iteration 

used as a comparison term, (eq. 7.c). 

𝐼 = (1 −
𝑇

𝑇𝑝

) ∗ 100 (7.c) 

4.2.1 Parallel Tasks 

The prototype currently only supports single tasking, where 
a new job is only processed when the last one is completed, 
as said in the introduction, one of the goals of this thesis is to 
see the effect of parallel tasking in the completion time, with 
different heuristics. For this, an iteration with single tasks was 
compared with the parallel tasking with the dispatching rules 
referred in section 3, although only the best performing 
dispatching rules are shown, 50 client requests were used as 
inputs to the model, with the following results: 

 
Figure 11: Makespan comparison of single tasking with parallel 

tasking with the best performing SMT rule 

Combining parallel tasking with the SMT dispatching rule 
originates the best results, reducing the overall completion 
time by 51.3%, when comparing with single tasking, making 
this change imperative to improve the system, as well as 
allowing the system to be improved by adding identical 
parallel machines in key processes. 

4.2.2  Home Position 

Individuals involved in the development of the prototype 
claimed the robot goes to the home position for safety reasons, 
as it’s a prototype, but they claim that in the future its intended 
for the need to go to the home position in not necessary, and 
so, the model was put to test to determine the effect of the 
home position in the performance. 

 
Figure 12: Makespan comparison of having to go to home position 

and not going to the home position (gray) 

Going to the home position does not affect the process time 
dramatically, with a reduction in makespan of 4.8%. 

This is because, most of the time, no more than one bottle is 
available, which is proven by the low utilization of the robot, 
as its idle almost half the time. 

4.2.3 Resource Allocation 

Tables with resource utilization, resource occupation and 
performance improvement were used to better understand 
which workstations should have parallel machines. The W3 
has the largest utilization and occupation rate, and its 
predecessors in the workflow, as seen in figure 3, W2 and W4, 
have a large difference between its occupation and utilization 
rates, implying that the bottles at these Ws spend most of the 
time waiting, which indicates a possible bottleneck at W3, so 
the first step was adding an extra W3. 

 
Figure 13: Makespan comparison of having single machines, and 

having an extra W3 

As seen on figure 13, adding a parallel W3 yields an increase 
in performance of about 27.1% when comparing with the best 
performing dispatching rule with single machines, meaning 
the W3 is a bottleneck, applying this change in the real 
counterpart proves effective, with the LPT algorithm being 
the most effective for the configuration. With this new 
configuration, the W3 might still be a bottleneck as its 
utilization/occupation ratio is still high, W6 might also be 
another possible bottleneck, as it has both a large utilization 
and occupation, W1, with a large occupation and having each 
job going through it three times (figure 3), makes considering 
an extra parallel W1 a possible improvement to the system, 
the next iterations where made based on these comments, with 
the best ones shown below: 

 
Figure 14: Makespan comparison of having two W3s, with having 

an extra W3 with an W6 or W1  

According to the simulation model, adding an extra machine 
to W6 when already having two W3s, further decreases 
makespan by about 9.7%. Adding an extra W1, when already 
having two W3s, results in a performance increase of 5.9%, it 
might not be as effective as adding a W3 and a W6, depending 
on the cost of the machines it might be a viable option. 
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W3 still possesses the highest utilization, so its still 
restricting the workflow and W6 has still the 2nd overall 
highest utilization. W1 appears to restrict the flow of tasks, as 
W5 has a low utilization/occupation ratio, since each job need 
to go through W1, having a single machine might create a 
choke point. As the combination of extra parallel W3 and W6 
has the lowest makespan for most dispatching rules, it is 
utilized as a comparison term to other configurations: 

 
Figure 15: Makespan comparison of having two W3s, W6s and 

W1s, with having three W3s and two W6s and W1s (gray) 

Including an extra W1 to the configuration that already 
possesses two W3 and W6, yields the largest reduction in 
makespan of 5.5%. 

 
Figure 16: Makespan comparison of having two W3s, W6s and 

W1s, with having three W3s and two W6s and W1s (gray) 

Adding an extra W3, relative to previous configuration, 
further reduces the makespan by 10.1%, other additions were 
tested, using this configuration as a reference, but the 
makespan does not decrease more than 2%, so adding more 
Ws does not yield much better results. 

The robot is now utilized most of the time (92.6%), with its 
high utilization, the movement time might significatively be 
hindering the workflow, as the workstations still have an 
overall low utilization, and increasing the number of parallel 
machines no longer yields reductions in makespan larger than 
2%, also the fact that the SMT rule, which relates with the 
robot’s speed, is performing better than other dispatching 
rules, makes a study on the robot movement speed a relevant 
topic.  

4.2.4 Robot Speed 

The robot currently works at a slow speed as it is only a 
prototype, but it can be increased further down the line. 

The configurations that have the have the largest impact on 
the makespan as well as the single machines configuration, 
were employed and a factor of 1.25 and 1.5, was multiplied 
by both the pre movement and movement time for this 
experiment, with the following results: 

Standard configuration: 

 
Figure 17: Makespan comparison of increasing the robot speed for 

the single machines configuration 

Two W3s: 

 
Figure 18: Makespan comparison of increasing the robot speed for 

the configuration with an extra W3 

Two W3s and W6s: 

 
Figure 19: Makespan comparison of increasing the robot speed for 

the configuration with an extra W3 and W6 

Two W3s, W6s and W1s: 

 
Figure 20: Makespan comparison of increasing the robot speed for 
the configuration with an extra W3, W6 and W1 

Three W3s and two W6s and W1s: 

 
Figure 21: Makespan comparison of increasing the robot speed for 
the configuration with two extra W3s, and one extra W6 and W1 

Increasing the velocity of the robot does not reduce the 
single machines configuration’s completion time by a large 
margin, but for the other configurations, if the velocity of the 
robot can be increased by 25% and 50%, the makespan is 
reduced by at least 9.8% and 20.5% respectively. 

Combining an increase in robot speed, with adding key 
workstations, can be considered as the best option, choosing 
the right combination depends on the cost and feasibility of 
the changes, information that the author does not possess.  

5. Conclusions and Future Work 

The premise of a manufacturing system capable of handling 
different customer requests while dealing with real-time 
changes, was achieved, by developing a Digital Twin focused 
on simulation recurring to scheduling of parallel tasks. A 
mixed event simulation model was then developed, capable of 
handling various customer requests, robot movement speeds, 
as well as different combinations of machines, it recurs to five 
different heuristics: SPT, LPT, LWR, SMT and CSMT, to 
make scheduling decisions. Simulation runs with different 
parameters were experimented, it was proven that applying 
parallel task scheduling with a SMT  dispatching rule, reduces 
the makespan by 51.3%, when comparing with single task 
scheduling. Experiments with additional parallel identical 
machines were also conducted, the single addition that proves 
most effective is adding one W3, which decreases the overall 
completion time by 27%. The robot’s speed was also a topic 
of analysis, and it proves beneficial when parallel machines 
are added, in the configuration with two extra W3 and one 
extra W6 and W1, when increasing its velocity by 50%, yields 
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a reduction in makespan of 29.5%, compared to standard 
speed. Between all heuristics, SMT proved to be the most 
effective in reducing makespan, with the LPT outperforming 
the SMT in a few configurations.  

Overall, the objective of developing a Digital Twin capable 
of making real-time decisions, was achieved by utilizing 
completely reactive scheduling. With the ability do forecasts 
with different dispatching rules, various machine 
configurations and robot speed, with access to a visualization 
window, for a more intuitive understanding of the model, 
gives stakeholders more information about where the system 
can be improved. 

The next step is to apply this concept to the real asset, where 
the input of the Digital Twin wouldn’t be historical data, but 
instead, real-time data from the asset, recurring to sensors and 
the already existing software. For this, an interface that allows 
processing times and decisions to be altered in real-time, 
when an operator decides, instead of probability distributions, 
that represent the decision, would need to be integrated into 
the DT.  The operator should also have the option to makes 
scheduling decisions, as told in the introduction, people have 
problem-solving skills and knowledge of the system, 
therefore, they should have the ability to override scheduling 
decisions of the DT, when they see fit, which is a topic that is 
included in the goals of industry 5.0. 

References 

[1] M. M. Tseng, Y. Wang, and R. J. Jiao, “Mass 

Customization,” CIRP Encyclopedia of Production 

Engineering, pp. 1–8, 2017, doi: 10.1007/978-3-642-35950-

7_16701-3. 
[2] H. A. ElMaraghy, “Flexible and reconfigurable 

manufacturing systems paradigms,” International Journal of 

Flexible Manufacturing Systems 2006 17:4, vol. 17, no. 4, 

pp. 261–276, Oct. 2006, doi: 10.1007/S10696-006-9028-7. 
[3] Maija. Breque, Lars. de Nul, Athanasios. Petridis, 

and European Commission. Directorate-General for Research 

and Innovation., Industry 5.0 : towards a sustainable, human-

centric and resilient European industry. doi: 10.2777/308407. 
[4] T. Coito et al., “A Middleware Platform for 

Intelligent Automation: An Industrial Prototype 

Implementation,” Computers in Industry, vol. 123, p. 103329, 

Dec. 2020, doi: 10.1016/J.COMPIND.2020.103329. 
[5] R. Boschert Stefan and Rosen, “Digital Twin—The 

Simulation Aspect,” in Mechatronic Futures: Challenges and 

Solutions for Mechatronic Systems and their Designers, D. 

Hehenberger Peter and Bradley, Ed. Cham: Springer 

International Publishing, 2016, pp. 59–74. doi: 10.1007/978-

3-319-32156-1_5. 
[6] D. Ouelhadj and S. Petrovic, “A survey of dynamic 

scheduling in manufacturing systems,” Journal of Scheduling 

2008 12:4, vol. 12, no. 4, pp. 417–431, Oct. 2008, doi: 

10.1007/S10951-008-0090-8. 
[7] Averill M. Law and David Kelton, Simulation 

Modeling and Analysis, 5th ed. New York, NY, USA: 

McGraw-Hill, 2015. 
[8] A. Alrowaie Ahmed, “The effect of time-advance 

mechanism in modeling and simulation,” M.S. thesis, Naval 

Postgraduate School, Monterey, USA, 2011. Accessed: Aug. 

22, 2021. [Online]. Available: 

https://calhoun.nps.edu/handle/10945/10798 

[9] Jerry Banks, John Carson, Barry Nelson, and David 

Nicol, Discrete-event System Simulation. 5th ed. 2016. 
[10] T. Coito et al., “A Middleware Platform for 

Intelligent Automation: An Industrial Prototype 

Implementation,” Computers in Industry, vol. 123, p. 103329, 

Dec. 2020, doi: 10.1016/J.COMPIND.2020.103329. 

[11] H. Yu, S. Han, D. Yang, Z. Wang, and W. Feng, “Job 

Shop Scheduling Based on Digital Twin Technology: A 

Survey and an Intelligent Platform,” Complexity, vol. 2021, 

2021, doi: 10.1155/2021/8823273. 
[12] W. Hofmann and F. Branding, “Implementation of 

an IoT- and Cloud-based Digital Twin for Real-Time 

Decision Support in Port Operations,” IFAC-PapersOnLine, 

vol. 52, no. 13, pp. 2104–2109, Jan. 2019, doi: 

10.1016/J.IFACOL.2019.11.516. 
[13] P. Karagiannis, N. C. Zacharaki, G. Michalos, and S. 

Makris, “Increasing flexibility in consumer goods industry 

with the help of robotized systems,” Procedia CIRP, vol. 86, 

pp. 192–197, Jan. 2019, doi: 

10.1016/J.PROCIR.2020.01.039. 
[14] A. Fahmy, T. Hassan, and H. Bassioni, “What is 

Dynamic Scheduling?,” PM World Journal, vol. 3, Aug. 

2014. 
[15] K. Muhamadin, M. Shukri, and O. Khayal, “A 

Review for Dynamic Scheduling in Manufacturing,” The 

Global Journal of Researches in Engineering, vol. 18, no. 5-

J, pp. 25–37, Aug. 2018, doi: 10.13140/RG.2.2.15345.33129. 
[16] T. Allweyer, BPMN 2.0. Norderstedt, Germany: 

BoD, 2010. 
[17] Anylogic, “Help Section.” https://anylogic.help/ 

(accessed Sep. 09, 2021). 

[18] P. Thompson and Y. Liu, “Understandings of 

Margin of Error” Sep. 2005, doi: 10.21037/jtd.2017.09.14. 

 


